3d printers – Overzicht

2021-08 heb ik de volgende 3d printers operationeel:

  1. Voron DIY 2.4 300x300x300
  2. Sapphire Pro
  3. Prusa mini
  4. I3 Prusa Bear DIY Fly-CDY-V2 met onafhankelijke Z-assen
  5. I3 Prusa Bear ‘plus’ DIY met onafhankelijke carriages
  6. A30M Duet2wifi Geetech dual head
  7. Delta G2S Duet2wifi Geetech single head speedprinter
  8. Kingroon KP3 mini
  9. Flashforge adventurer 3
  10. Ender3pro met MMU2S penta colour

 

3D reproductieservice

Heb je een onderdeel of object dat je nagemaakt wilt hebben?

Of in een andere kleur, maat of materiaal wilt hebben?

Otwerp voor pasbus (Nylon)

 

Wij kunnen je helpen met onze 3D Scan service!  Met onze 3D scanners maken we een exacte opname van je voorwerp door het volledig rondom fotografisch vast te leggen.

3D-Scanner XYZ voor vastleggen van kleine details

Daarna verwerken we de opnames naar een 3D printbaar ontwerp.

Het 3D ontwerp kunnen we schalen naar groter of kleiner, rekken naar langer, breder, korter enzovoorts.

Vervolgens kunnen we het al dan niet aangepaste ontwerp printen in allerlei soorten materiaal met enkele of meerdere kleuren, transparant en dergelijke.

Nylon verloopbus voor flexibele buispassing

Her resultaat is snel beschikbaar en je kan er eenvoudig meer bij bestellen!

3D printservice

Wij maken een exclusieve print van je ontwerp, op maat en supersnel!

Prints van buisadapters, luchtafvoer en filterhuis

Aanleveren van je ontwerp gaat via mail naar info@3dsnel.nl.

Betalen gaat vooraf via ons paypal account of via een tikkie.

Verzendkosten zijn op basis van NLpost tarieven, meestal is dat Eur 6,95.

Wij printen dezelfde dag en versturen de volgende dag. Wil je het sneller of wil je de print(s) ophalen  bel ons dan even of neem contact op via een appje.  Wil je meerdere prints dan kan het wat langer duren voor alles klaar is.

Je kunt bij ons terecht voor het afdrukken van 3D ontwerpen in PLA en PETG tot 50x50x50 cm.  ABS kunnen we printen t/m 22x22x22 cm.

  1. PLA is de goedkoopste optie voor het 3d printen. PLA is perfect voor de meeste toepassingen en is beschikbaar in de basiskleuren zwart, rood, oranje, geel en wit.  PLA heeft meestal een glimmende afwerking.
  2. ABS is de duurste optie voor het 3d printen vanwege de gesloten machines met hogere temperaturen die nodig zijn voor ABS. ABS is voor toepassingen waar extra sterkte nodig is en/of waar de print wordt gebruikt bij hogere temperaturen.  Beschikbare kleuren bij ons in ABS zijn zwart, rood, oranje en wit.  ABS heeft standaard een matte afwerking, en kan op verzoek ook in glanzende afwerking worden geleverd.
  3. PETG zit qua prijs tussen PLA en ABS in en heeft bijna dezelfde eigenschappen als ABS maar is iets minder sterk. De PETG  basiskleuren zijn bij ons zwart, rood, oranje, blauw en wit. PETG heeft meestal een matte afwerking maar is ook met glimmende afwerking te krijgen.  Met de juiste PETG materiaalkeuze is een voedingsmiddelen certificaat leverbaar.
  4. NYLON is onze laatste toevoeging aan het assortiment.  Primair bruikbaar voor automotive toepassingen waar hoge sterkte en flexibiliteit belangrijk is.  Nylon is ook erg goed bruikbaar in de voedingsmiddelen industrie.

Tegen meerprijs kan geprint worden in PLA bronskleur, goudkleur, zilverkleur, eikenmix, berkenmix, rose, paars, donkergroen, donkerblauw, lichtblauw en felgroen.

Mengkleuren zijn ook mogelijk, we kunnen tot 4 kleuren in 1 ontwerp verwerken.

Onze 3d printmachines zijn beschikbaar voor afdrukken met 1 t/m 4 kleuren per print.

Afdrukken met meerdere kleuren zijn 30% duurder i.v.m. materiaalverlies.

We helpen je graag met je ontwerp.

Openscan ontwerpen maken wij voor je tegen uurtarief

Wij adviseren om eerst bij ons een ontwerpafdruk te laten maken om voordat je definitief een ontwerp laat printen,.  Een ontwerp print is sneller klaar en kost ca. 50% minder dan een definitieve print.  Een ontwerpprint wordt op onze delta 3d machine geprint met hoge snelheid en lage(re)  resolutie.  Met een ontwerpprint kun je in het echt zien hoe je ontwerp er uit ziet, met de juiste maten en passing.  Meestal is er nog wel wat aan te passen na de eerste print en dat gaat met een ontwerpprint lekker snel.  Daarna kun je het ontwerp aanpassen en nog een ontwerpprint maken of gelijk de finale 3d print laten maken.  It’s up to you!

 

Kerstster deur/raamhanger Arduino nano en WS2812 LEDS

Geprint op de Voron2.4-300 met wit PETG filament.

De ontwerp file voor het 3d printen in STL staat HIER.   Je moet 5 punten printen, de LED’s er doorheen voeren en daarna de draden er ergens uit laten komen.  De punten kun je na het monteren en testen aan elkaar lijmen met hotglue of transparant siliconen.

De 3 draden van de WS2812 LED string soldeer je aan de Arduino Nano (5V aan 5V, Gnd aan Gnd en de Data IN van de LED string soldeer je aan D3 van de Arduino Nano.  That’s it!   Daarna kun je de Arduino aan je PC koppelen met een data USB kabel en kun je de code downloaden van mijn website.

Als je de Arduino IDE nog niet hebt, download dan de app van de Microsoft website (Arduino IDE).

Zorg dat je mijn Arduino code download en open dit met de Arduino IDE APP> Waarschijnlijk moet de APP de arduino INO file nog herplaatsen in een nieuwe directory maar dar hoort vanzelf te gaan. Zo niet, doe dat dan zelf even.

Selecteer in de Arduino IDE de juiste microprocessor (Arduino Nano)..  Vervolgens de juiste versie processor (groot of klein geheugen) en de oude of nieuwe bootloader.  Deze keuzes zijn afhankelijk van het soort Nano dat je hebt gekocht of nog had liggen.  Daarna kies je de juiste poort (USB) voor je Nano.

Om te testen of je verbinding hebt tussen IDE en Nano , kun je opvragen of de Arduino IDE je Nano kan lezen.  Pas hierna kun je de Nano gaan laden met het gecomplieerde programma.

Succes!

De Arduino code staat HIER.

Kerstster deur/raamhanger Arduino nano en WS2812 LEDS

Geprint op de Voron2.4-300 met wit PETG filament.

De ontwerp file voor het 3d printen in STL staat HIER.   Je moet 5 punten printen, de LED’s er doorheen voeren en daarna de draden er ergens uit laten komen.  De punten kun je na het monteren en testen aan elkaar lijmen met hotglue of transparant siliconen.

De 3 draden van de WS2812 LED string soldeer je aan de Arduino Nano (5V aan 5V, Gnd aan Gnd en de Data IN van de LED string soldeer je aan D3 van de Arduino Nano.  That’s it!   Daarna kun je de Arduino aan je PC koppelen met een data USB kabel en kun je de code downloaden van mijn website.

Als je de Arduino IDE nog niet hebt, download dan de app van de Microsoft website (Arduino IDE).

Zorg dat je mijn Arduino code download en open dit met de Arduino IDE APP> Waarschijnlijk moet de APP de arduino INO file nog herplaatsen in een nieuwe directory maar dar hoort vanzelf te gaan. Zo niet, doe dat dan zelf even.

Selecteer in de Arduino IDE de juiste microprocessor (Arduino Nano)..  Vervolgens de juiste versie processor (groot of klein geheugen) en de oude of nieuwe bootloader.  Deze keuzes zijn afhankelijk van het soort Nano dat je hebt gekocht of nog had liggen.  Daarna kies je de juiste poort (USB) voor je Nano.

Om te testen of je verbinding hebt tussen IDE en Nano , kun je opvragen of de Arduino IDE je Nano kan lezen.  Pas hierna kun je de Nano gaan laden met het gecomplieerde programma.

Succes!

De Arduino code staat HIER.

FLY 407 board met TFT2.4 inch, wifi en RRF3

2021-05-11

Ik heb vandaag het Mellow Fly 407 board binnen gekregen, en het werkt nu geweldig!

Ik heb de Mellow dedicated wifi unit aangesloten op EXP 1 en EXP2 en op de seriële TFT aansluiting, de microSDcard offline op de PC geprogrammeerd met de bestanden van de voorgestelde Github site en het ging allemaal geweldig!  (De kleine toegevoegde handleiding is erg goed, gewoon de aanwijzingen volgen en het kan niet fout gaan)!

Eerst de firmware van het board gebrand, daarna de firmware van de wifi esp module en na het instellen van de wifi met YAT via USB, heb ik de wifi instellingen geprogrammeerd.  Daarna heb ik met de WDC PC-remote console van de Duet via wifi het FLY 407 moederbord ge-upload met de laatste beschikbare firmware: RRF3.4 beta en de laatste wifi- en DWC versies.

Daarna heb ik de seriële verbinding tussen de TFT aansluiting op het moederbord en de wifi module verwijderd en de BTT 2.4 inch TFT op dezelfde seriële poort aangesloten.  Omdat er maar 1 tft poort beschikbaar is, gebruik ik dezelfde seriële poort die ik gebruikte voor het programmeren van de esp wifi module.  Ik heb de RRF3 firmware al op de TFT unit gezet.

Wel, de resultaten zijn geweldig! Op de TFT na het aansluiten zie je de extruder stappen van 0 naar 1-2-3-4 en weer terug naar 0 dus dit werkt allemaal erg mooi!

 

Ronde klok WS2812 & Arduino nano

READ THIS ARTICLE IN ENGLISH

In de bovenstaande video zie je alle benodigde onderdelen voor de electronica.  Een arduino Nano, een tijdmodule LS3231 met batterij back-up en een 4-delige ring met elk 15 stuks WS2812 LED’s die zorgen voor een 160mm 60 LED units klok.  Je kunt hem bouwen als een open gebouwde unit zoals hierboven afgebeeld met draad of in een 3d printbare slanke behuizing die ik heb ontwikkeld.  Zie de foto’s hieronder.

Voor het bouwen van deze mooie nauwkeurige klok, kun je mijn ontwerp files voor de behuizing gebruiken op elke 3d printer die een horizontale bed size heeft van minimaal 165x165mm.

Pak de beide print STL’s . HIER. van de Prusa gedeelde site waar ik deze ontwerpen heb geupload. (Als de link breekt, zoek op de prusa site naar ws2812 circulaire arduino klok).

OF haal het STL bestand voor de VOORKANT van de klok van mijn website HIER

EN haal het STL bestand voor de achterkant van de klok van mijn website HIER

Eén STL is voor de achterkant en bevat de Nano box, de andere is voor de voorkant van de klok.  Positioneer de achterste STL 180 graden (dus omhoog gaat omlaag) in uw slicer, zodat zowel de doos als de LED-behuizing op Z-0 niveau zijn, d.w.z. naar beneden gericht op hetzelfde horizontale niveau.   De voorkant kan het best geprint worden met de platte kant naar beneden.  ABS is niet aan te raden omdat het minder stijf is, maar zal waarschijnlijk ook werken.  Voor mij werkt PETG of PLA het beste.

Gebruik wit filament voor het voorste deel, de achterkant kan elke kleur zijn die je wilt.

In de cirkel worden de 4 WS2812 LED segmenten in 1 volledige cirkel van ongeveer 160mm geplaatst.

Als je de elektronica aan de achterkant hebt aangesloten, schuift de voorkant er zo overheen. Geen lijm nodig.  Maar de LED ring kan best op 4 plaatsen met een druppel hotglue aan de basis van de achterste behuizing gelijmd worden.  Dit kun je het beste doen als je zeker weet dat alles goed werkt.

De LED onderdelen zijn verkrijgbaar op o.a. banggood , aliexpress en zo, zoek naar 60LED circle WS2812 die de 160 mm buitendiameter heeft.

Elke LED vertegenwoordigt een punt voor seconden, minuten of als uur indicator.

De kleuren detemine de functie.  Blauw wordt ook gebruikt als kwartier indicator met minder intensiteit, om een gevoel van positionering te hebben voor de andere LEDS als het donker is.

Kijk naar de video hierboven van het ‘open’ demonstratiemodel om te begrijpen hoe het werkt.

Hieronder vindt u de Arduino code voor de gebruikte Nano3, as-is. het werkt voor mij, en in de code vindt u ook alle benodigde elektrische aansluitingen en de specificaties van de gebruikte Time module.

Wanneer aangesloten op je PC, kun je de Arduino programmeren en via de seriële interface kun je naderhand speciale instellingen van de klok wijzigen, zoals helderheid, speciale kwartierverlichtingsindicatoren, enzovoort. het staat allemaal in de code hieronder.

De aansturing kan via een seriële interface met de usb ingang van de Arduino, via een terminalprogramma zoals YAT of met de interface van het Arduino IDE programma.

De commando’s zijn:

f; fader UIT
F; fader AAN
m (getal); dim de 4 blauwe marker LED’s met waarde (getal)
S; synchroniseren met RTC tijd
s; synchroniseren met systeemtijd (computer)
t (tijd); systeemtijd veranderen in:
b; helderheid van alle niet-marker LED’s

Doneer a.j.b. $1 aan mijn paypal account als je (delen van) mijn ontwikkelde materialen gebruikt, zodat ik kan doorgaan met het delen van leuke dingen voor jou om te downloaden

Ik hoop dat alles goed gaat lukken!

Succes,

Jan

De Arduino code, te gebruiken voor het programmeren van de Arduino Nano3 is beschikbaar onderaan dit bericht als platte tekst om te importeren in een leeg arduino bestand (met kopiëren en plakken).

Zorg ervoor dat je alleen de bibliotheken en tijdmodule gebruikt die in de code zijn aangegeven!  De gebruikte tijdmodule is van de betere generatie die de tijd zeer goed vasthoudt, ook in stand-by.

Gebruik voor het verbinden van de draden tussen de neopixel segmenten, de arduino en de tijdmodule een temperatuurgeregelde soldeerbout.  Gebruik een ventilator als je aan het solderen bent en adem geen giftige gassen in tijdens het solderen.

De Arduino code is hieronder weergegeven, te importeren in Arduino IDE in een .ino bestand.  Met de Arduino IDE moet je vervolgens de code compileren om de Arduino Nano geflasht te krijgen met het programma.


/**
* NeoClock
*
* Clock using 60 WS2812B/Neopixel LEDs and DS3231 RTC
* Small changes and updates made by jan Griffioen, Amsterdam Europe 2018-2021
* Libraries needed:
* * Adafruit NeoPixel (Library Manager) – Phil Burgess / Paint Your Dragon for Adafruit Industries – LGPL3
* *
* * Arduino Timezone Library (https://github.com/JChristensen/Timezone) – Jack Christensen – CC-BY-SA
* * Time Library (https://github.com/PaulStoffregen/Time) – Paul Stoffregen, Michael Margolis – LGPL2.1
*/

#include <Adafruit_NeoPixel.h>
#ifdef __AVR__
#include <avr/power.h>
#endif

#if defined(ESP8266)
#include <pgmspace.h>
#else
#include <avr/pgmspace.h>
#endif

/* for software wire use below
#include <SoftwareWire.h> // must be included here so that Arduino library object file references work
#include <RtcDS3231.h>

SoftwareWire myWire(SDA, SCL);
RtcDS3231<SoftwareWire> Rtc(myWire);
for software wire use above */

/* for normal hardware wire use below */
#include <Wire.h> // must be included here so that Arduino library object file references work
#include <RtcDS3231.h>
RtcDS3231<TwoWire> Rtc(Wire);
/* for normal hardware wire use above */

#include <TimeLib.h> //http://www.arduino.cc/playground/Code/Time
#include <Timezone.h> //https://github.com/JChristensen/Timezone

#include <EEPROM.h>

//Central European Time (Frankfurt, Paris)
TimeChangeRule CEST = {“CEST”, Last, Sun, Mar, 2, 120}; //Central European Summer Time
TimeChangeRule CET = {“CET “, Last, Sun, Oct, 3, 60}; //Central European Standard Time
Timezone CE(CEST, CET);

TimeChangeRule *tcr; //pointer to the time change rule, use to get the TZ abbrev
time_t utc;

#define PIN 5

unsigned long lastMillis = millis();
byte dimmer = 0x88;
byte hmark = 0;

byte ohour=0;
byte ominute=0;
byte osecond=0;

boolean fader=true;

Adafruit_NeoPixel strip = Adafruit_NeoPixel(60, PIN, NEO_GRB + NEO_KHZ800);

void setup() {

Serial.begin(57600);

strip.begin();
strip.setBrightness(50);

// Some example procedures showing how to display to the pixels:
// colorWipe(strip.Color(255, 0, 0), 50); // Red
//colorWipe(strip.Color(0, 255, 0), 50); // Green
//colorWipe(strip.Color(0, 0, 255), 50); // Blue
//colorWipe(strip.Color(0, 0, 0, 255), 50); // White RGBW
// Send a theater pixel chase in…
//theaterChase(strip.Color(127, 127, 127), 50); // White
theaterChase(strip.Color(127, 0, 0), 50); // Red
//theaterChase(strip.Color(0, 0, 127), 50); // Blue

//rainbow(20);
rainbowCycle(2);
//theaterChaseRainbow(50);

strip.clear();
strip.show(); // Initialize all pixels to ‘off’

Rtc.Begin();

Rtc.Enable32kHzPin(false);
Rtc.SetSquareWavePin(DS3231SquareWavePin_ModeNone);

if (!Rtc.GetIsRunning())
{
Serial.println(“Rtc was not actively running, starting now”);
Rtc.SetIsRunning(true);
}

if (!Rtc.IsDateTimeValid())
{
// Common Cuases:
// 1) the battery on the device is low or even missing and the power line was disconnected
Serial.println(“Rtc lost confidence in the DateTime!”);
}

byte eechk = EEPROM.read(0);
if(eechk == 0xAA) { //Assume this is our config and not a fresh chip
dimmer = EEPROM.read(1);
hmark = EEPROM.read(2);
fader = EEPROM.read(3);
}

timeSync();
}

void calcTime(void) {
utc = now();
CE.toLocal(utc, &tcr);
ohour = hour(utc);
ominute = minute(utc);
if(osecond != second(utc)) {
osecond = second(utc);
lastMillis = millis();

if(ominute == 0 && osecond == 0) {
//Every hour
timeSync();
}
}
}

void addPixelColor(byte pixel, byte color, byte brightness) {
color *= 8;
uint32_t acolor = brightness;
acolor <<= color;
uint32_t ocolor = strip.getPixelColor(pixel);
ocolor |= acolor;
strip.setPixelColor(pixel, ocolor);
}

void drawClock(byte h, byte m, byte s) {
strip.clear();

addPixelColor(m, 1, dimmer);

if(hmark > 0) {
for(byte i = 0; i<12; i++) {
addPixelColor((5*i), 2, hmark);
}
}

h %= 12;
h *= 5;
h += (m/12);
addPixelColor(h, 2, dimmer);
// 0x RR GG BB

if(fader) {
byte dim_s1 = dimmer;
byte dim_s2 = 0;
byte px_s2 = s+1;
if(px_s2 >= 60) px_s2 = 0;
unsigned long curMillis = millis()-lastMillis;
if(curMillis < 250) {
dim_s2 = 0;
dim_s1 = dimmer;
}else{
dim_s2 = map(curMillis, 250, 1000, 0, dimmer);
dim_s1 = dimmer – map(curMillis, 250, 1000, 0, dimmer);
}

// Add blue low intensity dots for 12(0),3, 6 and 9 O’çlock to verify where the clock is positioned..
addPixelColor(15, 128, 10);
addPixelColor(30, 128, 10);
addPixelColor(45, 128, 10);
addPixelColor(0, 128, 40);

addPixelColor(s, 0, dim_s1);
addPixelColor(px_s2, 0, dim_s2);
}else{
addPixelColor(s, 0, dimmer);
}

// add a background color
// setBrightness(Serial.parseInt());
// uint16_t j;
// for(j=0; j<60; j++) { // 1 cycles of colors on wheel
// strip.setPixelColor(j, Wheel(((j * 256 / strip.numPixels()) + j) & 255));
// }

strip.show();
}

byte rounds = 0;

void loop() {
calcTime();

if(rounds++ > 100) {
Serial.print(ohour);
Serial.print(“:”);
Serial.print(ominute);
Serial.print(“:”);
Serial.print(osecond);
Serial.println(“(C)JG-2020”);
rounds = 0;

}
//rainbow(21);
if (osecond == 59){theaterChase(strip.Color(0, 0, 127), 40); }// Blue; }
//if (ominute == 59 AND osecond == 59){theaterChase(strip.Color(0, 127, 0), 50); }// Green}
//if (ohour == 11 AND ominute == 59 AND osecond == 59){theaterChase(strip.Color(127, 127, 0), 50); }// Green}
else {drawClock(ohour,ominute,osecond);}

delay(10);

chkSer();
}

void timeSync(void) {
RtcDateTime dt = Rtc.GetDateTime();
setTime(dt.Hour(),dt.Minute(),dt.Second(),dt.Day(),dt.Month(),dt.Year());

Serial.print(“Synced to: “);
Serial.print(dt.Year());
Serial.print(“-“);
Serial.print(dt.Month());
Serial.print(“-“);
Serial.print(dt.Day());
Serial.print(“-“);
Serial.print(dt.Hour());
Serial.print(“-“);
Serial.print(dt.Minute());
Serial.print(“-“);
Serial.println(dt.Second());
}

void timeSave(void) {
utc = now();

RtcDateTime store = RtcDateTime(year(utc), month(utc), day(utc), hour(utc), minute(utc), second(utc));
Rtc.SetDateTime(store);

Serial.print(“Synced to: “);
Serial.print(year(utc));
Serial.print(“-“);
Serial.print(month(utc));
Serial.print(“-“);
Serial.print(day(utc));
Serial.print(“-“);
Serial.print(hour(utc));
Serial.print(“-“);
Serial.print(minute(utc));
Serial.print(“-“);
Serial.println(second(utc));

}

void setBrightness(byte brightness) {
dimmer = brightness;
}

void chkSer(void) {
unsigned int iy;
byte im,id,iH,iM,iS;

if(!Serial.available()) return;

switch(Serial.read()) {
case ‘b’:
setBrightness(Serial.parseInt());
Serial.print(F(“Brightness changed to: “));
Serial.println(dimmer);
EEPROM.put(0, 0xAA);
EEPROM.put(1, dimmer);
break;
case ‘t’:
iy = Serial.parseInt();
im = Serial.parseInt();
id = Serial.parseInt();
iH = Serial.parseInt();
iM = Serial.parseInt();
iS = Serial.parseInt();
setTime(iH,iM,iS,id,im,iy);
Serial.println(F(“System time changed”));
break;
case ‘f’:
fader = false;
EEPROM.put(0, 0xAA);
EEPROM.put(3, 0);
Serial.println(F(“Fader off”));
break;
case ‘F’:
fader = true;
EEPROM.put(0, 0xAA);
EEPROM.put(3, 1);
Serial.println(F(“Fader on”));
break;
case ‘m’:
hmark = Serial.parseInt();
EEPROM.put(0, 0xAA);
EEPROM.put(2, hmark);
Serial.println(F(“HMark changed”));
break;
case ‘s’:
timeSync();
Serial.println(F(“Synced RTC to System”));
break;
case ‘S’:
timeSave();
Serial.println(F(“Synced System to RTC”));
break;
default:
Serial.println(‘?’);
}
}

// Fill the dots one after the other with a color
void colorWipe(uint32_t c, uint8_t wait) {
for(uint16_t i=0; i<strip.numPixels(); i++) {
strip.setPixelColor(i, c);
strip.show();
delay(wait);
}
}

void rainbow(uint8_t wait) {
uint16_t i, j;

for(j=0; j<256; j++) {
for(i=0; i<strip.numPixels(); i++) {
strip.setPixelColor(i, Wheel((i+j) & 25));//255
}
strip.show();
delay(wait);
}
}

// Slightly different, this makes the rainbow equally distributed throughout
void rainbowCycle(uint8_t wait) {
uint16_t i, j;

for(j=0; j<256*5; j++) { // 5 cycles of all colors on wheel
for(i=0; i< strip.numPixels(); i++) {
strip.setPixelColor(i, Wheel(((i * 256 / strip.numPixels()) + j) & 255));
}
strip.show();
delay(wait);
}
}

//Theatre-style crawling lights.
void theaterChase(uint32_t c, uint8_t wait) {
for (int j=0; j<4; j++) { //do 4 cycles of chasing
for (int q=0; q < 3; q++) {
for (uint16_t i=0; i < strip.numPixels(); i=i+3) {
strip.setPixelColor(i+q, c); //turn every third pixel on
}
strip.show();

delay(wait);

for (uint16_t i=0; i < strip.numPixels(); i=i+3) {
strip.setPixelColor(i+q, 0); //turn every third pixel off
}
}
}
}

//Theatre-style crawling lights with rainbow effect
void theaterChaseRainbow(uint8_t wait) {
for (int j=0; j < 256; j++) { // cycle all 256 colors in the wheel
for (int q=0; q < 3; q++) {
for (uint16_t i=0; i < strip.numPixels(); i=i+3) {
strip.setPixelColor(i+q, Wheel( (i+j) % 255)); //turn every third pixel on
}
strip.show();

delay(wait);

for (uint16_t i=0; i < strip.numPixels(); i=i+3) {
strip.setPixelColor(i+q, 0); //turn every third pixel off
}
}
}
}

// Input a value 0 to 255 to get a color value.
// The colours are a transition r – g – b – back to r.
uint32_t Wheel(byte WheelPos) {
WheelPos = 255 – WheelPos;
if(WheelPos < 85) {
return strip.Color(255 – WheelPos * 3, 0, WheelPos * 3);
}
if(WheelPos < 170) {
WheelPos -= 85;
return strip.Color(0, WheelPos * 3, 255 – WheelPos * 3);
}
WheelPos -= 170;
return strip.Color(WheelPos * 3, 255 – WheelPos * 3, 0);
}

Penta extruder on A30M

Today I received my 5-in, 1-out hotend, non-mixing  air cooled with 1 nozzle and 1 heater//temp sensor.

I will install it on my A30M with the Duet2wifi board+extension board (5-fold with plug-in drivers). The A30M already has independant Z-stepper motors.

The Duet2wifi has 5 stepper ports, and the expansion board also has 5 stepper ports.  X,Y,2xZ, 5 Extruders is a total of 9 so this will indeed fit!

I will make new wiring for the 5 extruder steppers on top of the A30M frame with 5 bowden tubes to the hotend.  Since the hotend is non-mixing, this will be a  simple task to get into config.g.  For the slicer- it will also be easy. Just add the extruders to a total of 5 pieces. Add the correct filaments/temps/ no offset so set offset X and Y to 0..  The work will primarily be in  the tool changing files for T0-T5 where retraction- and extruding  settings will be needed.

Are professional 3d printers overpriced?

For what it’s worth, the articles I write are not only based on my opinion and experience,  common sense is also part of my written content.

In the first place you should ask ourself what you would define to be a professional 3d printer. Is it about price, durability, quality, size, usability, repeatability, speed, portability, cloud-based usage, shared usage, or possibly some other requirement that you find inportant? If you read the world’s professional literature about 3d-printing, it is always about either making one-off products or prototypes for complex (machine, dental, medical) purposes, or it has to do with printing parts in series for a specific branch of industry.  In both cases, the to be printed material is mostly nothing like the hobbyist uses. Professional printing goes from carbon/fiber to stainless steel, ceramics, titanium and so on.  Most professional production printers are in the price range above 30 k Euro.

3d printers from 500 Euro up until 15 k Euro are usually very good and precise at printing with common materials like ABS/PLA/Nylon/PetG, Carbon/wood et cetera and have a higher price tag than standard consumer models due to specific added value like the ability to print really big models, heated chamber, multicolor et cetera.

The X1 160Pro™ is the world’s largest metal binder jetting system and is now shipping to customers. A controlled-atmosphere model of the system, capable of high-volume aluminum and titanium production, will be available in late 2022. (Photo: Business Wire)And- after printing, most of these printed parts need post-processing like sintering for aluminium.

BigRep Pro 3D Printer | KeeraTech
BigRep PRO™

The price for professional 3d printers is a summation of a number of  drivers, like:

  1. Developing / staffing
  2. Developing / materials, software and so on
  3. Tools, offices, warehouse and so on
  4. Patents costs
  5. Price and quality of materials
  6. Production costs
  7. Marketing costs
  8. Post-delivery costs (Service/maintenance)

With the hobbyist’s 3d printers, there is really only one driver for the costs, which is materials and production.  Of course the quality is an issue here because cheap parts of lesser quality will make products of lesser quality. All other drivers from the above list are not required and/or have already been put in the public domain and are therefore not put in the final selling price. With professional 3d printers, the production numbers are usually low, quality high and developing processes are usually lengthy and expensive.  Thus, the price per sold 3d printer will be uplifted a lot from the development related costs. On top of this, the real development of 3d printing is not even starting.  The pioneers that develop printers will have to keep developing over and over again.  Only when professional 3d printers will be in a stable production phase and development is more like tweaking than making large steps, it is possible to see prices drop.

So- to answer the question: No, professional 3d printers are not overpriced. But- they are expensive and are only interesting if you already need products that can be made today with such a specific printer. Think of car parts development, Formula 1- engine developments and so on.  In these industries, it is very expensive to get a mold and rework a rough newly developed product in the conventional way so a 3d metalprinter will fulfill an already existing need.  And the investment will pay back very quick due to the fast production times. And- the engineers that design a part can just use their existing tooling to make designs  for 3d printing.

independant Z-axis with FLY-CDY-V2

I replaced my Duet2wifi with the Mellow’s FLY-CDY-V2 motherboard

My cloned Duet2wifi MB that was running in my I3 bear suddenly refused to start up any longer, so I decided to put my recently purchased Mello FLY-CDY-V2 motherboard in the I3 bear printer.  Up to now, the makerbase Duet2wifi clones keep working properly and all other clones die on me…

During the replacement process I encountered the following issues:

  1. The microSD card sleeve on the board was loose on 1 side. I noticed that the board just got in a frozen status now and then.  The solution I finally discovered was that the microSD card holder had to be soldered back to the board, so the SD card made better contact with the little metal parts inside the holder.  Since the repair, no problems anymore!
  2. The connectors of the Fly vboard are standard X254 connectors, which I prefer.  But, the Duet uses propriatary ones so I had to replace all connectors.  But, I shortened all cables in doing this so I now have a very neat looking etup.
  3.  I had to print a new case for this board. I found only 1 available version that also had a fan in the cover.  Slick and well ventilated.  Available on Thingiverse!
  4. The available help on internet like Github pages are all well documented but you must be certain to choose the V2 version of the board for firmware and so on since the FLY-CDY (without V2) is a completely different board with another processor (LPC).  be aware that things are not comparable between the two boards.  The V2 is not just an upgrade!
  5. The rest on the board is quite clear with regards to usage and placement. All self-explainatory.
  6. The only way to connect your paneldue is via the serial 4-pin connector.  The block cables don’t work ‘as-is’.  The paneldue works flawless.
  7. The firmware and DWC software works very well on this STM32-based board. Also updating works flawlesssly.
  8. The difference that matters most to me is some little issues like different naming conventions, pin naming differences between the 2 boards and so on.  Nothing very difficult but is makes it impossible to swap your configs between the boards without some editing.  I would thing=k that cloning should be done more reliable, that would make the board sell better imho.
  9. There is no breakout/expansion port.  Due to the chosen processor, the potential of the Due2wifi with the many expansion possibilities is niot available on the CDY-FLY-V2.
  10. What you do get on the FLY-CDY-V2:
    1. Neopixel port up to 60 WS2812 LEDS (10 max or more with seperate 5V PSU)
    2. max 4 heaters ( 1 bed, 3 other) 
    3. max 4 temp sensors (1 bed, 3 others)
    4. max  3 controllable (PWM) fan outputs
    5. max 6 steppers with any sort of (pluggable) drivers (UART only, no SPI)
    6. max 6 end- (or other) switch inputs
    7. 12-36 Volt power input
    8. BLtouch port fully functional
    9. wifi unit
    10. DWC webbased DUET2wifi controllable
    11. Laser port
    12. A limited number of controllable GPIO pins are available on the EXP2 and EXP 1 port, this could be used for driving accessories like magnets, valves, extra LED’s and so on (via uplifters/Mosfet boards)
    13. Jumper for setting the power to the min/max switches at VCC or 5V (choose 5V!!)
    14. If you want, the option to have PT100 chip installed gives you 1 input for PT100
    15. The Duet2wifi firmware suite is available for this board through a specific development Github page, and as long as this is maintained updates for the board’s reprap firmware and DWC are available.